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Abstract 

-4 revised Biyesim algorithm for estimating siirface rain rate: convective rain 

proportion, and latent heating/drying profiles from satellite-borne passive microwave 

radiometer observations over ocean backgrounds is described. The algorithm searches a 

large database of cloud-radiative model simulations to find cloud profiles that are 

radiatively consistent with a given set of microwave radiance measurements. The 

properties of these radiatively consistent profiles are then composited to obtain best 

estimates of the observed properties. The revised algorithm is supported by an expanded 

and more physically consistent database of cloud-radiative model simulations. The 

algorithm also features a better quantification of the convective and non-convective 

contributions to total rainfall, a new geographic database, and an improved representation 

of background radiances in rain-free regions. 

Bias and random error estimates are derived fiom applications of the algorithm to 

synthetic radiance data, based upon a subset of cloud resolving model simulations, and 

from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates 

exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates 

of random error are propagated to represent errors at coarser time and space resolutions, 

based upon applications of the algorithm to T K I  Microwave Imager (TMI) data. 

Errors in instanta.neous rain rate estimates at 0.5" resolution range from approximately 

50% at 1 mm h-' to 20% at 14 m h-'- These errors represent about 70-90% of the mean 

random deviation between collocated passive microwave and spaceborne radar rain rate 

estimates. 

The cumulative algorithm error in TMI estimates at monthly, 2.5" resolution is 

relatively small (less than 6% at 5 mm day-') compared to the random error due to 

infirequent satellite temporal sampling (8-35% at the same rain rate). Percentage errors 

due to sampling decrease with increasing rain rate, and sampling errors in latent heating 

rates follow the same trend. Averaging over three months reduces sampling errors in rain 

rates to 6-15% at 5 mm day-', with proportionate reductions in latent heating sampling 

error. 

2 



1. Introduction 

Over the last decade, diagnostics of time/space-averaged satellite rainfall estimates 

have helped to create a better picture of the earth’s climate and its variability, e.g., 

Rasmussen and Arkin (1993); Xie and Arkin (1997), Adler et al. (2000), Curtis and Adler 

(2000). These studies have relied upon remote sensing of precipitation from infrared, 

passive microwave, and spaceborne radar measurements, culminating in the Tropical 

Rainfall Measuring Mission (TRMM; 1997-present). Moreover, it has been amply 

demonstrated that precipitation measurements from space have had a beneficial impact 

on general circulation model assimilations and numerical weather prediction model 

forecasts using data assimilation methods; e.g. Hou et al. (2000, 2001, 2004), 

fishnamurti et al. (2001). 

Toward a better understanding of how precipitation processes affect the atmosphere, 

the next logical step is to consider the convective and stratiform partitioning of total 

precipitation, as this partitioning is linked to the organization of convective systems and 

the distributions of vertical motion and latent heat release in the atmosphere. Latent 

heating is a driver of atmospheric circulations, from the scale of individual convective 

elements to the scales of the Hadley and Walker circulations; therefore, a knowledge of 

the 4-D distribution of latent heating gained from satellite observations can be used to 

study these circulations and io help cpntify the didxitic liezting componeot of the 

atmospheric energy budget. Yang and Smith (1999a-by 2000) demonstrated that it is 

possible to estimate latent heating profiles from Special Sensor Microwave Imager 

(SSM/I) satellite observations. They presented the 3-D global distributions of monthly 

mean latent heating for 1992 and discussed the evolution of the Walker circulation for the 

1992 El NZo event and the Asian monsoon circulation in the context of latent heating. 

Only a limited number of studies have utilized satellite estimates of convective/stratiform 

proportion and latent heating in numerical model assimilation experiments. However, the 

significant improvement of numerical model assimilations and forecasts utilizing even 

approximate satellite rain rate estimates has spurred interest in new experiments in which 

satellite convective/stratiform rain proportion and latent heating rates would be 

assimilated. 
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One of the primary objectives of the Tropical Rainfall Measuring Mission (TRMM) is 

to gain a better understanding of the three-dimensional distribution and evolution of 

atmospheric latent heating in the Tropics; see Simpson et al. (1988). The TRMM polar- 

orbiting satellite observatory is fitted with a passive and active microwave sensors that 

provide measurements of the horizontal and vertical structure of precipitation in the 

atmosphere at a relatively high sampling rate (minimum spacing -5 km). The aim of the 

present study is to examine the potential for estimating consistent precipitation, latent 

heating and drying rates based upon passive microwave observations from the TRMM 

Microwave Imager (TMI). The heritage of this study is an investigation in which a 

Bayesian estimation method was applied to measurements fiom the Special Sensor 

Microwave/Imager to estimate surface rainfall rate, convective rainfall proportion, and 

latent heating rates (Olson et al. 1999). In the previous study it was demonstrated that in 

addition to measured microwave radiances, empirical estimates of the convective fraction 

of precipitation w i h  the nominal satellite footprint were required to retrieve reasonably 

unambiguous estimates of surface rainfall rate and latent heating. One reason for the 

positive impact of convective fraction information is that it provides a measure of the 

horizontal inhomogeneity of the rain field within the satellite footprint, which is critical 

for establishing the link between footprint-average rain rate and upwelling microwave 

radiances. The convective fraction is also an indicator of the vertical motion and latent 

heating profile. For example, a large convective fiactim zt the scale of the SCZSOT 

footprint (-10 km) is correlated with stronger upward motion and positive latent heating 

through the depth of the cloud layer, while a large fraction of non-convective (stratiform) 

rain generally indicates weak mesoscale ascent and heating in the upper troposphere with 

descent and evaporative cooling at lower altitudes; see Home (1989). 

In the present study, the Bayesian estimation method described in Kummerow et al. 

(1996), Olson et al. (1996), Olson et al. (1999), and Kummerow et al. (2001) is extended 

to provide estimates of precipitation, latent heating and drymg, based upon passive 

microwave observations from the TMI over ocean. The technique is applied only over 

ocean surfaces because any vertical structure information contained in TMI observations 

is compromised by the high surface emissivity of land surfaces; i.e., microwave 

emissiodabsorption by liquid precipitation cannot be easily distinguished from land 

l 
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emission. Aside from the adaptation to TMl observations, the method is improved by (a) 

expanding the algorithm’s cloud-resolving model database to include a greater diversity 

of precipitation systems, (b) making basic adjustments to the ice precipitation 

microphysics in the cloud-resolving model simulations to produce more realistic graupel 

and snow distributions, (c) including the effects of mixed-phase precipitation in the 

cloud-resolving model simulations, (d) utilizing consistent definitions of convective rain 

and total rain area in the context of cloud-resolving model simulations and satellite 

observations, (e) including a new geographic database to better separate ocean, coast, and 

land areas, and (f) establishing a more consistent microwave radiance “background” in 

rain-free areas. The combination of these changes leads to passive microwave estimates 

of precipitation that have greater consistency with independent radar estimates and latent 

heatinddrying distributions that have more fidelity with climatological distributions; see 

Part 1T of this series. The Bayesian estimation method is at the heart of the current 

TRMM facility algorithm (2A- 12, Version 6 )  for estimating precipitation-related 

parameters from TMI observations. 

In section 2, the charactenstics of the TMl observations and the basic estimation 

method are briefly reviewed, with modifications for improved parameter estimation 

described in section 3. Synthetic retrieval studies, in which the algorithm is applied to 

microwave radiances synthesized fiom cloud resolving model simulations, are used to 

estimate the biases and randoni errors in retrieved pzrameters. Estimates of random 

errors due to incomplete information in the microwave data can also be derived fiom the 

Bayesian (algorithmic) method Both synthetic retrievals and the algorithmic method are 

described and applied in section 4. In section 5 ,  the capability of the complete 

microwave algorithm is demonstrated through applications to TMI observations from 

July 2000 over the tropical and subtropical oceans. Monthly-mean estimates of 

precipitation and latent heating and their uncertainties, including errors due to infi-equent 

sampling, are examined. The paper concludes with a brief summary and reflections on 

the direction of future work (section 6). 

2. Data and Basic Method 

a. TRMM observations 
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The analyses presented in this study are based upon observations, both synthesized 

and actual, fiom the TRMM Microwave Imager (TMI). The TMI is one of five sensors 

aboard the TRMM satellite observatory, which was launched into low earth-orbit in 

November 1997, to provide data on the characteristics of convection in the tropics and 

subtropics (35 S - 35 N). The TMI is a scanning passive microwave radiometer with 

dual-polarization channels at 10.65, 19.35; 37, and 85.5 GHz, and a vertical-polarization 

channel at 21.3 GHz; see Table 1. The lower-frequency channels are primarily sensitive 

The channels 

become increasingly sensitive to the vertical path-integral of ice-phase precipitation as 

the channel frequency increases, while the range of sensitivity to rain decreases. At 85.5 

GHz, measured radiances are essentially insensitive to variations in rain path for path- 

integrals greater than about 1 kg m-2, but radiances can decrease by 10’s of OK for modest 

increases in the path-integrals of snow or graupel. Due to these sensitivities, the TMI has 

I 

l 

I 

I to the vertical path-integral of liquid precipitation in the atmosphere. I 
I 

a crude precipitation profiling capability, which is somewhat compromised by limited 

spatial resolution at the lower fiequencies. In addition to the information provided by 
I l 
I 

TMI on vertical precipitation structure, horizontal structure information can be gleaned 

from variations of precipitation signatures in the swath imagery. The sampling resolution 

of the TMI is about 14 km along-track and 5 km cross-track. I 

Another TFMM instrument, the precipitation radar (PR), measures precipitation 

backscatter at 13.8 GHz near nadii, mii is this iised to infer piofks of preci-,i?atiion 

water content; Table 1. The PR’s greater range resolution (0.25 km) and horizontal 

sampling resolution (4.3 km) with respect to the TMI lead to more structural detail in 

retrieved precipitation fields, and therefore precipitation estimates fiom the PR are used 

as a comparative reference in the current study. There are basic physical limitations on 

the swath width of spacebome radars; the PR swath is 2 15 km wide, compared to the 760 

km-wide swath of the TMZ. The greater swath width and smaller mass and power 

consumption of microwave radiometers define their role as sampling instruments, and 

therefore a constellation of radiometers is planned for the hture Global Precipitation 

Measurement (GPM) mission. Spaceborne radars, which can provide high-resolution 

precipitation data coincident with the passive radiometers over limited areas, are expected 

to be the “calibrators” of the passive microwave measurements. 
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b. Estimation of cloudpropertiesji-om M I  

The TMI retrieval algorithm (2A- 12, Version 6 )  is based upon a Bayesian technique 

described in Kummerow et al. (1996,2001) with an extension to latent heating estimation 

by Olson et al. (1 999). In the algorithm, cloud-resolving model simulations, coupled to a 

radiative transfer code, are used to generate a large supporting database of simulated 

precipitatiodatent heating vertical profiles and corresponding upwelling microwave 

radiances. Given a set of observed multichannel microwave radiances from a particular 

sensor, the entire database of simulated radiances is scanned; the “retrieved” profile is 

composited from those profiles in the database which correspond to simulated radiances 

consistent With the observed radiances. Formally, a TMI estimate of profile parameters, 

&[XI, is given by 

where the model profile vector x k  contains all parameters, including the surface rain rate, 

convective rain rate, liquidice-phase precipitation and latent heatingdrymg profiles, 

corresponding to the simulated radiance indices, Zs(xk). The radiance indices, constructed 

from radiances at the different radiometer channel frequencies!polarizations, are the 

normalized polarization and scattering indices defined by Petty (1994). Zo is a vector of 

sensor observed radiance indices, similarly defined. SI and 01 are error covariance 

matrices of the simulated and observed microwave radiance indices, respectively, and k 
is a normalization factor. 

Additional information regarding the observed profile, such as estimates of the area 

fractions of rain and convective rain within the nominal satellite footprint (14 km x 14 

km for TMI) and the freezing level, is incIuded in the constraint term, C. 

Here,fs is a vector of simulated constraint parameters, andfo is a vector of corresponding 

observed parameters. Sf and Of are error covariance matrices of the simulated and 

observed constraint parameters, respectively. A complete description of the formulation 

of the constraint parameters and their errors is deferred to section 3. 

7 



The summation in (1) is over all simulated profiledradiance indices in the supporting 

cloud-radiative model database. In principle, any cloud property represented in the 

supporting cloud-radiative model simulations can be estimated using (1) to the extent that 

there is sufficient sensitivity of the passive microwave observations to variations in that 

property. In this way, surface rainfall rate, convective rain proportion, and profiles of 

precipitation, latent heating and drying can be made with different degrees of accuracy. 

Since, in general, multichannel passive microwave observations contain limited 

dormation regarding precipitation and related cloud parameters, there are, in fact, a 

distribution of these parameters that are consistent with any set of observations at a given 

footprint location. The expression (1) gives the mean of this distribution, but it is also 

possible to calculate the variance of the distribution for a single estimated parameter 

u m g  

+I= l? i( x - i [ x ] ) ’ }  (3) 

which yields a measure of the uncertainty in the estimate of x due to the limited 

information content of the observations. 

The uncertainty represented by (3) would exist even if the cloud-radiative model 

simulations in the GPROF supporting database and the radiometer observations were 

error-fiee. Therefore, although (3 j accounts for random errors resulting fiom the limited 

information content of the observations, additional uncertainties in GPROF estimates due 

to errors in cloud-radiative modeling may occur. Since true validation of precipitation- 

related quantities using independent observations is difficult, (3) at least provides a lower 

bound on the random error of GPROF estimates- a basic “building block” for estimates of 

the random error in the derived products, as described in section 4. 

3. Modifications of the TMI algorithm 

In the development of the Version 6 TMI TRMM facility algorithm, several 

modifications are included to allow for latent heating/drying estimation. These 

modifications lead to not only improved physical models that better represent the 

relationships between cloud properties and upwelling microwave radiances at the TMI 
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frequencies, but also a better extraction of information from the TMI observations to 

isolate the dependencies of the observations on the cloud properties that are estimated. 

Although the main driver for these modifications is the estimation of latent 

heating/drying, the improved sensitivity of the algorithm leads to estimates of surface 

rainfall rate with generally less bias with respect to independent estimates; see Part II. 

a. Greater diversity in the supporting cloud-resolving model database 

In Version 5 of the TRMM facility TMI algorithm, the Bayesian estimation method 

was supported by cloud simulations corresponding to only three different observed 

environments in the tropics and subtropics for ocean applications. These simulations are 

replaced by the six simulations listed in Table 2. Four of the new simulations are 

performed using the Goddard Cumulus Ensemble (GCE) model, a three-dimensional, 

nonhydrostatic cloud-resolving model described in Tao and Simpson (1 993) and Tao 

(2003a). Among the physical parameterizations in this model is a description of cloud 

microphysical processes based upon Lin et al. (1983) with additional processes derived 

from Rutledge and Hobbs (1984), in which cloud liquid, rain, cloud ice, snow, and 

graupel equivalent water contents are calculated prognostically. The precipitation 

particle size distributions are represented by inverse exponential functions with 

prescribed intercept values; the slopes of the exponential distributions are adjusted to 

account for variations in siiiidaied w-gttei zonteiit. This sing!e-mornent microphysical 

scheme used in the GCE model is called the 3ICE scheme. GCE short-term simulations 

of mesoscale convective systems are usually initiated with a spreading cool-pool within a 

fixed environment obtained fiom rawinsonde data. However, the longer-tern evolution 

of cloud systems can be simulated by nudging toward environmental conditions using 

observed large-scale advective tendencies of temperature and humidity, and observed 

horizontal momentum; Johnson et al. (2002). The Dec. 19-26 TOGA COAFE simulation 

listed in Table 2 was performed in this manner. The utility of the longer-term simulations 

is that a greater spectrum of convective system types can be represented because of 

changing environmental conditions in the model, and these can be extracted for algorithm 

applications simply by sampling the simulations over time. In the present study, less 
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organized convection, not available from the cool-pool forced simulations, is drawn from 

three periods on 23 December of the TOGA COARE simulation. 

Although convective systems up to the scale of squall lines can be successfully 

simulated using the GCE model, the evolution of convection embedded in larger-scale 

systems requires a model that can represent scale interaction. For this purpose, the Penn 

StateNCAR Mesoscale Model 5 ( M M 5 ;  see Dudhia, 1993) model is utilized, but the 

microphysical scheme used in the MM5 simulations is again the 31CE scheme, which has 

been incorporated into Mh45; see Tao et al. (2003b). MM5 simulations nested to 

resolutions - 2 km are required to capture the cloud and precipitation spatial structures 

necessary for the proper calculation of microwave radiative transfer through the 

simulated structures. Using nested grids, MM5 simulations of the inner core of 

Hurricane Bob (1991), and the warm and cold frontal regions of wintertime and 

summertime extratropical cyclones are performed. 

Although the simulations listed in Table 2 represent only a small hction of systems 

that might be observed by the TMI, inclusion of these simulations in the Bayesian 

method’s supporting database leads to much greater diversity in candidate precipitation 

and latent heating/drymg profiles than in earlier algorithm implementations. 

6. Adjustment of cloud-resolving model ice microphysics 

Prior to this study, a significant shortcoming of simulations based upon the 3ICE 

microphysics were distributions of graupel which extended widely over stratiform 

precipitation regions, far fi-om k y  convective updrafts. These graupel distributions were 

considered erroneous because graupel growth is primarily through the accretion of liquid 

water, whch is generally confined to regions close to convective updrafts. The relatively 

dense graupel (0.4 g ~ r n - ~  in 3ICE) should generally fall out within - 20 km of convective 

updrafts, while less dense snow (0.1 g could be horizontally advected over much 

greater distances. Instead, simulations based upon 31CE showed comparable 

concentrations of snow and graupel, or even graupel-dominated distributions, at distances 

greater than 50 km fiom the convective “so~rce’~ regions. 

The erroneous distributions of graupel were traced to the process of accretion of snow 

by graupel, which in 31CE did not discriminate between the relative sizes of the snow and 
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graupel particles. Effectively, a graupel particle could collect a snow particle of any size, 

and the resulting particle would be assigned to the graupel category. This would lead to a 

composite particle with an unrealistically large density if the colliding graupel particle 

was relatively small and snow particle relatively large. Therefore, very small graupel 

particles advected large distances from convective regions could grow significantly due 

to the collection of snow. 

To correct this problem within the constraints of the 31CE bulk microphysical 

parameterization, the efficiency for collection of snow by graupel is set to zero at model 

gridpoints where concentrations of cloud liquid water and rain are negligible. Although 

this correction is an oversimplification, it avoids the difficulty of reformulating the snow- 

graupel collection kernal, and is supported by evidence that the collection efficiency of 

"dry" ice particles is relatively small; see Pruppacher and Klett (1997) for a general 

discussion. The effect of the correction is to limit graupel distributions to regions near 

convective updrafts, while snow dominates ice precipitation distributions at greater 

distances. These relative proportions graupel and snow are consistent with in situ 

microphysical observations in stratiform regions, which indicate low liquid water 

contents and ice-phase precipitation distributions dominated by snow/aggregates; see 

Houze and Churchill (1987), McFarquhar and Heymsfield (1996), and Stith et al. (2002). 

The correction also improves the distributions of microwave scattering by ice-phase 

precipitation, since excessive scattering by graupel, previously noted in siiniilztions of 

stratiform regions, is eliminated. On the other hand, there is new evidence that even with 

the correction, simulated microwave scattering by ice-phase precipitation is still generally 

greater than the observed scattering, and this discrepancy will be the subject of future 

investigations . 

c. Inclusion of the effects of mixed-phase precipitation in CliMsimulations 

In the CRM simulations listed in Table 2, the melting of ice-phase hydrometeors is 

simplified, such that any meltwater is immediately categorized as rain; i.e., there is no 

explicit representation of mixed-phase precipitation in these simulations. In order to 

account for the effects of mixed-phase precipitation, the 1-D parameterization for melting 

precipitation described in Olson et al. (200 1 a,b) is applied to all stratiform grid points in 
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the CRM simulations of the algorithm’s supporting database. The parameterization is a 

steady-state model that simulates the evolution of the spectra of melting snow and 

graupel particles, given their initial spectra just above the freezing level as simulated by 

the CRM. The concentrations and electromagnetic properties of the melting particles are 

computed, replacing those of the original CRM. 

Although the impact of melting particles on upwelling microwave radiances is 

generally small in tropical-systems, the impact of melting can be significant in 

midlatitude systems. The shallower rain layer and widespread distributions of snow aloft 

in extratropical cyclones leads to radiance increases up to 15 OK at 19.35 GHz due to 

melting snow. Changes in radiances of this order are associated with changes in total 

precipitation optical depth -0.06 (or -0.43 dB), which can lead to a significant impact on 

retrieved rain rates at midlatitudes. Therefore the parameterized effects of melting are 

included in the Version 6 “MI algorithm database. 

d. Definition of cloud and precipitation properhes in simulated footprints 

As described in Section 2, any cloud/precipitation properties x simulated by the 

CRM’s can potentially be retrieved fiom the TMI data using (1). The specific choice of 

cloudprecipitation properties and their resolution is somewhat arbitrary, however. Given 

the sample spacing of the TMI sensor along-track (1 3.9 km), a 14 km x 14 km nominal 

“footprint” is selected for the resoiution of’dersion 6 a i g o i i t t  piGdUCk 

. 

Simulated properties such as the surface rainfall rate, cloud and precipitation water 

contents are horizontally averaged over 14 km x 14 km areas in the CRM domains to 

represent properties at product resolution. Cloud latent heating is defined as Q&, the 

apparent heat source less the contribution from radiative heatingkooling, and cloud 

drying is @, the apparent moisture sink; see Yanai et al. (1973). Eddy flux convergence 

contributions to these quantities are defined relative to a 55 km-resolution mean state. 

Simulated cloud latent heating and drying rates are similarly averaged over 14 km x 14 

km domains to represent heating and drymg rates at product resolution. 

The classification of convective and non-convective gridpoints in the CRM 

simulations is required not only for determining convective and stratiform rain 

proportions, which are estimated using the TMI algorithm, but also for determining the 
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area coverage of convection, which, incorporated into (2), is used to constrain algorithm 

estimates. The convectivehon-convective classification of CRM gridpoints in Version 6 

is based upon an evaluation of the vertical structure of model-simulated mass fluxes, 

inspired by the partitioning method of Xu (1 995). First, the vertical atmospheric column 

above each model gridpoint is examined to find the level corresponding to the maximum 

magnitude of mass flux. The maximum magnitude of mass flux is compared to a 

prescribed threshold, 

M,,,, = S - 2kg m-2 s-17 (4) 

where 

is a scaling factor that accounts for the decrease in grid-resolution updraftldowndraft 

strength depending on the model grid spacing. Here, A is the model horizontal grid 

spacing in kilometers. If the maximum mass flux exceeds the threshold, and the level of 

the maximum flux is in the lower troposphere (here defined as below the freezing level, 

or below 2 km altitude, whichever is higher), then the gridpoint is classified as 

convective. If the mass flux threshold is exceeded in the upper troposphere, then a test is 

performed to see if the upper-tropospheric maximum is part of a contiguous “updraft” 

with roots in the lower troposphere. This is accomplished by sequentially searching, 

level by level, from the level of maximum mass tlux to ever-iower ieveis. if, at the next 

lowest level, the maximum mass flux in a 3 x 3 gridpoint neighborhood is greater than 

Mrhrah:, then the process is repeated at the next-lowest level, testing the 3 x 3 

neighborhood centered on the new maximum. A 3 x 3 neighborhood of the current 

maximum at the next-lowest level is tested to account for significant tilting of convective 

updrafts. The process is continued until (a) the maximum magnitude of mass flux is less 

than at which point the process is terminated, or (b) a maximum magnitude of 

mass flux greater than Mthresh is found at a level in the lower troposphere, and the original 

gridpoint is classified as convective. 

If the tests previously described do not result in a convective classification, then 

further tests are applied to identify weaker convection. At the given gridpoint, the 

column-average mass flux and column-average cloud liquid water content below the 
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freezing l e d  are calculated. The gridpoint is classified as convective if the column- 

average mass flux is positive, and the average cloud water content is greater than 

CLwCrhresh = s . 0.08 g . (6)  

Note that cloud water is generally produced if mean vertical motions are positive below 

the fkeezing level. If none of the above tests are satisfied, then the gridpoint is classified 

as non-convective. The definition of convection derived from these tests is generally 

correlated with classifications based upon rainfall rate, but it is somewhat more liberal 

since some gridpoints associated with stronger upper level updrafts are also classified as 

convective. 

Using the convectivehon-convective classification, the area fraction of convection 

within the simulated footprints (14 km x 14 km) is calculated. The area fractions of 

convection are compared to empirical estimates derived from the TMI data in the 

algorithm’s constraint term, (2). The convective contributions to surface rainfall rate, QI- 

QR, and QZ within each simulated footprint are also computed and included in the vector 

x of parameters to be estimated. 

. Tzl addition to the convective area fraction, the area fraction of total rainfall rate 

within each simulated footprint is also calculated. The area fraction of total rainfall rate 

is defined as the area within each simulated 14 km x 14 km footprint where the model 

gridpoint values of surface rainfall rate exceed 0.3 mm h-’.- The area fraction of total 

rainfall is compared to empirical estimates from the TiMi data in the algorithm’s 

constraint term, (2). 

e. New geographic database 

Crucial to the operation of the algorithm is the correct classification of the underlying 

surface as open water, land, or coast. Previously, the definition of ‘‘coast” was based on 

a threshold applied to the distance to the nearest land (if over water) or nearest water (if 

over land). This definition has the drawback that a rather large area of open water 

centered on even a very small island will be classified as “coast, ” preventing the 

utilization of the more appropriate ocean algorithm for this case. Additionally, large 

areas of interior land are classified as “coast” due to the presence of nearby rivers and 

lakes. 
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A revised geographic database is therefore developed based on the minimum radius 

of a circle encompassing a specified minimum fraction of the opposite surface type. The 

starting point of the geographic database is the U.S. Navy’s 1/6” x 1/6” global 

“e~evation” dataset, which includes a terrain classification of each grid point. For each 

1/6” gnd point over water, the radius R of a circle centered on that location is increased 

until it encompasses 5% land area. The final radius is then recorded at that grid point as 

the effective distance from significant land contamination. For points over land, a similar 

procedure is used, except that the threshold for water coverage is set to 20%. A grid 

point over land is then classified as “coastal land” if R is less than 50 km; points over 

water are classified as “coastal water” if R is less than 30 km. 

The above thresholds for landwater fraction and for radius R are determined 

subjectively, based on examination of TMI images and rain rate retrievals in coastal 

areas. The intent is to classify as few grid points as possible as “coast” while still 

ensuring that TMI footprints centered over locations classified “ocean” and “land” would 

not experience operationally sigmfkant contamination by the opposite surface type. 

f: Calculation of “background ’’ rain-free radiance field 

In this study, the TIvfI algorithm as applied to ocean locations, and therefore the 

radiance indices [IS and IO in (l)] are d e  normalized polarization and scattering indices 

described by Petty (1994). These indices were developed to isolate the microwave signal 

due to precipitation particles from variations in radiances due to varying ocean surface 

emissivity, sea surface temperature, and atmospheric water vapor and also to decouple 

the brightness temperature effects of microwave attenuation from those due to scattering. 

Both indices depend upon reasonable estimates of ‘%ackground” radiances in the absence 

of clouds or precipitation. 

In Version 5,  the background radiances were estimated from actual radiances at 

nearby locations deemed to be relatively free of rain and cloud. Unfortunately, the 

criteria used for determining such points were unreliable and, in any case, even the 

existence of cloud-free pixels could not be guaranteed within any reasonable radius. 

Consequently, estimates of background radiances were commonly too warm, and too 

depolarized, by as much as 10 OK or more. 
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In Version 6,  an improved method is implemented based on direct TMI estimates of 

column water vapor V and ocean surface wind speed U, both of which are possible even 

in cloudy areas as long as precipitation contamination is not severe. This method greatly 

increases the fraction of the ocean area for which reliable local estimates of background 

radiances can be made; these are then interpolated spatially into the relatively small areas 

for which precipitation contamination is significant. The basic procedure is outlined by 

Petty (1994); details of the implementation for TMI, including the regression-based 

algorithms for Y and U and the dependence of background radiances on V and U, are 

given by Chiu and Petty (2004). The net result of the revision is that fields of 

background radiances are both smoother and significantly more realistic than those 

obtained using the Version 5 method. 

The radiance indices in the cloud-resolving model simulations are determined by 

evaluating the true background radiance field. That is, upwelling radiances at each model 

gridpoint are calculating with all cloud and precipitation water contents set to zero. 

g. Reformulation of the convectivehon-convective rain area constraint 

The changes in the Version 6 TMI algorithm that have the greatest impact on 

estimates of cloud latent heating and drying profiles are those related to the estimation of 

the parameters describing the convective coverage fiom TMI observations, and the 

evaluation of the same parameters in the Ciiivi simulations. In previous versions of the 

TMI algorithm, only estimates of the area fraction of convection within the nominal TMI 

footprint were used as a constraint in (2). In Version 6, the area fractions of both 

convective rain and total rain are estimated, and these are included in (2). 

As in Version 5, the area fiaction of convective rain within the TMI footprint is 

computed as a minimum variance estimate, combining convective fraction estimates &om 

both TMI polarization signatures and image texture; see Olson et a1 (2001~). 

Here,& is the estimate based upon TMI polarization data,J;, is the convective fraction 

estimate based upon image texture information, and of, and O,I are the uncertainties 

corresponding to these estimates. 
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The polarization-based estimate of convective area fraction within an 85.5 GHz T M  

footprint is given by Eq. ( 8 )  in Olson et al. (2001~). This estimate will be identified as 

fpOlo in the present study. Since the nominal TMI footprint in the Version 6 algorithm is 

larger (14 km x 14 km) than the 85.5 GHz footprint, a three-footprint filter is first applied 

to the estimates to approximate the spatial response at 37 GHz (given the spacing of the 

85.5 GNZ footprints along-track and cross-track, it is not possible to closely approximate 

a uniform response over the nominal footprint using such a filter). The filtered 

convective fraction estimate is given by 

.fpO1o = o.2329fpolo,-, + o-5342fpO1oj + o-2329fp0~~,+1 (8 )  

Here, the subscriptj indicates the scan position of the footprint, and jpoL0 is the filtered 

estimate at scan positionj. Therefore, the filter weights the convective fi-action estimates 

corresponding to the current, precedmg, and following footprints along the TMI scan. 

Finally, synthetic radiance tests are used to calibrate the filtered estimate to make it 

conform to the definition of convective fraction in the supporting CFW database. The 

synthetic radiances are based upon a subset of the CRM simulations in Table 2, for which 

upwelling radiance calculations at the TMI fiequencies have been performed to simulate 

TMI observations. The polarization of radiances at 85 GHz is approximated using the 

empirical formula, 

at each CRM gridpoint classified as stratiform (Olson et al. 2001~). The polarization of 

convective gridpoints is assumed to be zero. Here, TB85v and TB85h are the microwave 

radiances at 85.5 GHz in the vertical and horizontal polarizations, respectively, and a is 

equal to -0.192 and b is 52.4 OK. The simulated radiances at CRM resolution are 

convolved by the TMT antenna patterns to synthesize TMI observations. A regression fit 

between the filtered convective fractions, fpolo,  derived from the synthetic radiance data 

and the convective fractions derived from the CRM simulations over nominal footprints 

yields 

A 
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where f p o l  is the final convective fraction estimate. of 

polarization-based convective fraction estimates is given by Eq. 16 in Olson et al. 

(2001c), propagated through (8) and (1 0). The polarization-based convective fraction 

estimate is reliable only if significant scattering by precipitation-sized ice is observed. If 

not, then microwave image texture and liquid precipitation emission signatures must be 

The error variance, 

used to identify convection. In the present study, if the 85 GHz scattering index, S85 

(from Petty, 1994), is less than 40 O K ,  then an alternative texture-based estimate of 

convective fraction is calculated. In estimating the convective fraction based upon 

texture information, three indices are used to first decide whether or not convection might 

be present in the TMI footprint. 

The first index is the maximum difference between the normalized polarization at 37 

GHz and the normalized polarktion of its neighbors. 

~37,~ = m a  {PV,,. - ~37,) (11) 
i-tcl 
1’- Jr3 

Here, P3 7 is the normalized polarization at 37 GHz, as defined by Petty (1994), and the 

subscripts refer to the scan line (ij and position along the scan h e  v~ ofa  given footprint. 

Because the spatial separation between every third footprint along a scan line (13.7 km) 

is approximately equal to the spacing between scan lines (13.9 km), (8) represents the 

maximum difference between P37g and the P37 values of nearly equally spaced 

neighbors. A large value of P37,,d geaerally i?dicztes a stroag j p d i m t  of Axmption by 

liquid precipitation; however, the edges of stratifom precipitation regions can sometimes 

produce significant absorption gradients. In order to eliminate these stratiform 

precipitation gradients fi-om consideration, the polarization-based convective fraction 

estimate is used to determine which gradients are in close proximity to convection. 

I 

The distance dij. is the separation distance between the footprint indexed by ij and the 

footprint indexed by i’j’, and do is set to 4 km. Therefore the index w,,~ is a measure of 

the probability of convection based upon the presence of convection in the neighborhood 

of the footprint being analyzed. 
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The previous indices are useful for indicating the presence of convection if the 

convection produces relatively strong microwave signatures. A final index is formulated 

to identify footprints containing weak or isolated convection. 

p37- = {0.5 P37, - P37, -t 0.5 P37,,, j -  j.> 
i-1 s i’s i+l 
j’- 1-3, j 

The index P37- is essentially the maximum second derivative of P37 in any direction, 

centered on the footprint being analyzed. In the search for the maximum second 

derivative, only values of P3 7 at footprints indexed by i j -  ’ and 2i-i ’ 2j-j ’ both greater than 

the value of P37 at footprint i j  are admitted, thereby ensuring that P 3 7 ~  is a local 

minimum. Weak or isolated convection will produce locally greater liquid water 

absorption than neighboring footprints, and therefore a smaller value of P3 7. 

Based upon P 3  7gmd, w,~, and P37,,, the possibility of convection within the 

analyzed footprint is ascertained. If it is determined that convection within the footprint 

is possible, then the area fraction of convection within the footprint is estimated using the 

normalized polarization hfference at 37 GHz, as follows. 

[ 1 - P37, forS85 < 40Kand 

ft, - 1  = 

{(P37gd > 0.2 and wpol > 0.1) or P37- > 0.3} 

I O ,  otherwise 

For optically thick precipitation regions partially filling a iadiometer footpi&, 1 - P37 is 

approximately equal to the area fraction of precipitation within the footprint; Petty 

(1994). Even if convection is indicated by the index tests on the right-hand-side of (19, 

not all of the rain within the footprint is necessarily convective. In addition, the 

resolution of the nominal footprint (14 km x 14 km) is different from the TMI spatial 

response at 37 GHz. Therefore, the convective fraction estimates are calibrated against 

model-simulated convective fractions, using synthetic data as in the derivation of (10). 

The final texture-based convective fraction estimate is given by 

f, = -0.12272 + 0.91249jta. 

If a texture-based convective fraction estimate is allowed by (14), then the error variance, 

de, of the estimate is assigned a value of 0.2 “K2 based upon previous work by Hong et 

al. (1999). 
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It has been demonstrated that algorithm constraints on convective rain area lead to 

more accurate passive microwave estimates of precipitation and latent heating (Olson et 

al. 1999); however, the relative proportions of convective and non-convective rain flux 

are more closely related to vertical latent heating structure; see Tao et al. (1993). 

Although microwave radiometric signatures cannot be interpreted in terms of 

convectivehon-convective rain flux directly, the area proportions of convective and non- 

convective precipitation coverage can be inferred if in addition to convective area 

coverage the total rain coverage can be estimated. Therefore, precipitation-related 

quantities retrieved fiom TMI data are also constrained by estimates of the total rain area 

within d e  nominal footprint. Following Petty (1 994), the total rain area fraction in d e  

plane-parallel limit is first approximated by 
n 

f,, = 1 - P37,  (16) 

(17) 

and then calibrated using synthetic data, yelding 

= -0.0031981 + 0.28436j- + 1.79647,.:, - 1.1102 f,,, - 3  . f ram 

Estimates of convective area fi-action, given by (7), and total rain fiaction, given by (17), 

are incorporated into the constraint term, (2), of the Bayesian method. 

4. Error Estimates 

Errors in retrieved precipitation-related parameters can be estimated (a) from 

comparisons of TMI-retrieved parameters to independent data, (b) from algorithm 

applications to synthetic data, and (c) from the algorithm itself, drawing upon information 

provided by the Bayesian formulation. Since independent estimates of rain rate from 

ground-based radars or raingages are not always reliable, the alternatives (b) and (c) are 

emphasized here. Evaluation of TMI surface rain rate, convective rain rate, and QI-QR 

estimates using independent, ground-based observations is performed in Part 11 of this 

’ 

I 

senes. 

a. Synthetic data 
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TMI observations are synthesized using the same procedure utilized to create the 

algorithm’s supporting database (see section 3a). A subset of the cloud-resolving model 

simulations listed in Table 2, but separate from the simulations used in the algorithm’s 

database, are set aside to represent “true” fields of cloud, precipitation, and latent heating. 

The subset consists of 3-D model volumes at two time periods each fiom the Hurricane 

Bob, GATE Sept. 12, TOGA COARE Feb. 22, and TOGA COARE Dec. 19-26 

simulations. Upwelling radiances at the TMI fiequencies/polarizations are calculated 

using Eddington’s Second Approximation, and these radiances are convolved by 

functions approximating the TMI antenna patterns to synthesize radiances as they might 

be measured by TMI. Since the polarization of scattered radiances at 85.5 GHz is used in 

the TMI algorithm (section 3 f )  but not calculated using the Eddington method, the 

empirical function (9) is utilized to simulate the polarization of scattered radiances. A 

nominal level of Gaussian-distributed noise, with a standard deviation of 1 O K ,  is added to 

the convolved radiances to simulate sensor noise. 

The Th4I algorithm is applied to the synthesized microwave radiances, and the 

estimated parameters are compared to the “true” parameters fiom the corresponding 

model simulations. Although footprint-scale (14 km) estimates of precipitation and latent 

heating may be of interest in studies of storm structure, applications such as global data 

assimilation generally require lower-resolution estimates. Figure 1 illustrates the impact 

of averaging on the random error of TI43 surface rain rate and estimates. The top 

panels (Fig. la) are comparisons of true and estimated parameters at footprint-scale. 

True and estimated parameters in the middle panels (Fig. 1 b) have been averaged to 28 

km resolution, and parameters in the lower panels (Fig. IC) have been averaged to 56 km 

resolution. Note that although the overall magnitude of rain rate and QI-QR estimates are 

diminished by averaging, the scatter of estimates relative to the variance of values is 

reduced. The correlation coefficient of rain rate increases from 0.88 to 0.92 to 0.95 as the 

averaging area is increased. 

Although random errors in rain rate and Q1-a estimates decrease as the effective 

resolution of the estimates decreases, systematic errors remain. The general trend of 

these errors is illustrated in Fig. 2. Plotted in the top panel are rain rate-weighted 

histograms of both the true and estimated rain rates at footprint resolution (14 km), 
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derived born applications of the TMI algorithm to the synthetic data. The weighting of 

the histogram by rain rate yields the relative contribution of the rain rate (along the 

abscissa in the figure) to the mean rain rate. Although there are obvious differences 

between the histograms of true and estimated rain rates, there are no apparent systematic 

differences. 

In the lower panel of Fig. 2, the bias-weighted histogram of true rain rates is plotted. 

Here, the plotted points can be interpreted as the contribution of the differences between 

estimated and true rain rates to the total bias, corresponding to the true rain rates along 

the abscissa. The Bayesian formulation of the TMI algorithm is designed to yield an 

unbiased rain rate estimate given a set of observations, and the total bias is only 0.016 

mm h-’, or 0.9% of the true mean rain rate. However, significant biases may occur for 

certain subpopulations. It may be noted from Fig. 2 that lower rain rates tend to be 

overestimated while higher rain rates are underestimated. The trend of 

over/underestimation is a consequence of the ambiguity of the input radiance data, which 

do not uniquely specify a particular rain rate. Given this ambiguity, the algorithm 

provides a rain estimate that is roughly the “average” of all rain rates in the supporting 

database that are consistent with the input observations. In the range of lower rain rates, 

the algorithm “averages” light rains in the database consistent with the input 

observations, but the distribution of these light rains is limited by the physical constraint 

that rain rate must be greater than or equal to zero. The algorithm’s “aveizgig” over this 

asymmetric distribution leads to a positive bias of the rain rate estimate. In the range of 

higher rain rates, the algorithm’s “average” of rains consistent with the input observations 

tends to favor less intense rain rates, which occur more frequently than rains of greater 

intensity in the supporting database. The result is a negative bias of rain estimates in this 

range. 

An analysis of estimates based upon synthetic data leads to similar bias trends. 

Presented in the panels of Fig. 3 are the contributions to the mean estimated and true QI- 

QR, as well as the contributions to the bias of el-&, at all altitudes where algorithm 

estimates are made (0 - 18 km). Note fiom the mean contribution plots that the range of 

estimated QI-QR values is more limited than the true range. The contributions to QI-QR 

bias indicate overestimation of weak heating rates, while stronger heating and cooling 
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rates are systematically underestimated. A consequence of these bias trends is illustrated 

in Fig. 4. Plotted in the figure are the mean vertical profiles of el-&, and the convective 

and non-convective contributions to QI-QR, from applications of the algorithm to the 

synthetic Hurricane Bob data (see Table 1). For comparison, the true mean Q 1 - e ~  

profiles fiom Hurricane Bob are also plotted, and in each case the e 1 - Q ~  profiles have 

been normalized by the mean rain rate to help isolate differences in profile shape. Since 

the domain of the Bob simulation covers only the inner core of the storm, strong 

convective heating is expected to dominate the vertical profile of el-&, and indeed this 

is indicated by the true mean profiles. The underestimation of extreme heating by the 

algorithm, however, leads to a low bias of estimated convective and total Q& in the 

lower troposphere. Mean rain rates are similarly underestimated 

In the foregoing examples, deficient information contained in upwelling microwave 

radiances was shown to lead not only to significant random errors at the scale of 

microwave footprints but also to biases in estimates of rain rate and latent heating. It 

should be noted that these biases occur in spite of the fact that the physical models 

incorporated in the algorithm are consistent with the true precipitationheating 

distributions and radiative transfer calculations utilized in the creation of the synthetic 

data. In applications of the TMI algorithm to actual TMT radiance data, errors in the 

physical models will lead to additional error. However, the focus of the present work is 

on the random error associated with non-specific information in t3ie microwme &ita afid 

how this error propagates to timekpace averages of TMI estimates. Described in the next 

subsection are methods for extracting dormation from d e  TMI algorithm itself to help 

estimate random errors in specific applications of the algorithm. 
5 

b. Algorithmic methods 

In section 2b, the Bayesian formulation of the TMI algorithm was used to derive an 

estimate of the random error (3)  in footprint-scale retrieved parameters due to deficient 

information contained in the microwave radiance data. Although addition random error 

in TMI estimates can result fiom errors in the algorithm’s supporting database of cloud- 

resolving model simulations, relation (3) provides a useful “building block” for the 

derivation of errors in space-time average precipitation or latent heating estimates. 
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The general magnitude of errors in footprint-scale rain rate estimates is illustrated by 

Fig. 5 ,  which is based upon applications of (1) and (3) to seven orbits of TMI 

observations (over ocean footprints only) spanning the month of July 2000. Note that the 

errors due to deficiencies in radiance information increase with estimated rainfall rate, 

while percentage (relative) errors decrease. For example, the random error in a 1 mm h-' 

rain rate estimate is approximately loo%, but the error decreases. to about 60% at 20 mm 

h-'. These results are similar to the findings previously reported by Bauer et al. f2002), 

who calculated algorithmic errors from the Version 5 TMI algorithm applied to 

observations of Supertyphoon Paka. The value of these error estimates is that they reflect 

not only the dependence of errors on rain intensity but also the dependence on other 

environmental conditions specific to a given radiometer observation. Note from Fig. 5 

that the range of errors corresponding to a given rain rate estimate increases as the rain 

intensity increases. Also, Haddad (personal communication) has modified (3) to include 

the additional error contribution due to uncertainties in the cloud-resolving model 

simulations of the algorithm's supporting database. Uncertainties in the model 

hydrometeor profiles have not yet been quantified, however. 

c. Errors in half-degree, instantaneous rain rates 

It was noted previously that in applications such as data assimilation, TMI estimates 

at footprint resolution (14 icm) are not generaiiy required. In such applications, estimates 

at 0.5 or 1.0 degree spatial resolution are consistent with the grid resolution of a 

prospective analysis. In this subsection, the algorithmic estimates of footprint-scale error 

are propagated to 0.5" resolution and compared to TMI-PR differences. 

If the simple spatial average of N Th4I footprint-scale estimates over a given area is 
- N  x - = L E X i ,  
N .  r=l 

then the error variance of the spatial average is 

where oi and q are the errors of the ith andm footprint-scale estimates, respectively, and 

rg is the correlation of the errors of the estimates. Note that although the TMI footprints 
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are nearly contiguous, there is greater spatial sampling cross-track than down-track in the 

instrument swath, which could result in additional random error in the spatial average. 

Given the algorithmic estimates of footprint-scale random error given by (3), the error 

variance of the spatial average, (19), can be evaluated if the spatial correlation of errors, 

r, can be estimated. In Bauer et al. (2002), it was assumed that the correlation of errors 

could be approximated by the correlation of retrieved parameters themselves. In the 

current study, the synthetic precipitation and radiance data are used to evaluate not only 

the correlation of surface rain rates, but also the correlation of rain rate errors, derived 

fiom applications of the TMI algorithm to the synthetic radiances (see section 4a). 

Presented in Fig. 6 are correlations of surface rain rate and rain rate error, plotted as 

functions of footprint separation distance. The correlations, given by the short- and long- 

dashed curves in the figure, are based upon all possible footprint pairs in the synthetic 

data such that each pair is contained in the same 55 km x 55 km rectangular box. Note 

that although both curves exhibit the familiar exponential decrease in correlation with 

footprint separation distance (e.g. Bell et al. 1990, Fig. 3), the correlation of errors 

decreases much more rapidly with distance than the correlation of rain rates. 

Furthermore, if the synthetic data are also stratified by the average estimated rain rate 

in each 55 km x 55 km box, an additional set of error correlation curves is produced. 

Although there are insufficient synthetic data to determine the dependence of error 

correlation on box-average rain rate, rhe mean Correlation and siandard deviatioii values, 

.also plotted in Fig. 6, indicate a relatively distinct family of curves. The mean error 

correlation, conditioned on box-average rain rate, decreases even more rapidly with 

footprint separation distance than the unconditional error correlation. The reason for this 

behavior may be traced to similar behavior in the spatial correlation of rain rates: as the 

average rain rate is restricted to some small interval, the variance of average rain rate 

must also be small. Therefore higher rain rates in one part of a specified area must be 

compensated by lower rain rates in another part, resulting in positive correlations 

between footprints at small spatial separations and negative correlations for larger 

separations. Although the correlation of errors does not become negative at larger 

spatial separations, the correlation of errors becomes small, in consonance with small or 

negative rain correlations. 
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If the mean correlation function based upon the rainfall-stratified data is incorporated 

in (19), and the footprint-scale uncertainties are derived from (3), then (19) can be 

evaluated &om applications of the ?hlI algorithm to radiance data. As a test of (1 9), the 

algorithm is applied to all over-ocean TMI observations from the month of July 2000. 

The TMI half-degree, instantaneous rain rates and their estimated errors are then 

collocated with half-degree, instantaneous PR rain rates: only TMI-PR pairs for which 

both instruments observed at least 90% of the same half-degree box are included in the 

analysis. The TMI-PR pairs are then binned by the PR half-degree rain rate into 1 mm h-' 

intervals. Based upon the TMI-PR pairs in each rain interval, the mean half-degree TMI 

rain rate error fiom (19) is plotted against the mean half-degree PR rain rate; see Fig. 7. 

For comparison, the standard deviation of TMI-PR differences is also plotted for each 

rain rate interval. 

Comparing the half-degree resolution TMI rain rate random errors in Fig. 7 to the 

errors at footprint scale (Fig. 9, it is apparent that in both cases, errors increase with 
increasing rain rate, but percentage errors decrease with rain rate. It is -difficult to 

compare the curves in a quantitative way, since the distribution of rain rates MXTOWS with 
increasing averaging area; however, the minimum percentage error at half-degree 

resolution is -20%, compared to -60% at footprint-scale. Therefore, averaging appears 

to significantly reduce the random error of rain estimates, even considering the footprint- 

scale error spatial correiations that would tend to iimit such a reduction. Ttie ininimun 

percentage error of -40%, reported by Bauer et al. (2002) for Version 5 TMI estimates 

averaged to 60 km resolution, is due to the greater error correlations assumed in that 

study. Bauer et al. (2002) assumed that rain rate and error correlations were equal, 

leading to a likely overestimate of error correlations. 

Based upon applications of the algorithm to TMI observations over ocean from July 

2000, random errors in instantaneous, 0.5" rain rate estimates ranged from roughly 50% 

at 1 mm h-', to about 20% at 14 mm h-'. TMT errors also appear to explain 70 - 90% of 

the TMI-PR random deviation; see Fig. 7. The residual 10 - 30% is likely due to random 

errors in PR rain estimates and differences in spatial sampling of half-degree boxes by the 

TMI and PR. 
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d. Rundom errors in month& mean, 2.5" resolution estimates 

In applications of satellite rain rate and latent heating estimates to large-scale analysis 

or climate studies, data are often averaged to coarse spatial resolution and then over 

monthly or longer time periods; e.g. Xie and Arkin (1997); Adler et al. (2000). As the 

basis of a preliminary analysis of the uncertainties in longer timehpace average 

precipitationheating estimates, the random errors in monthly mean, 2.5" resolution 

estimates of surface rainfall rate are examined in this subsection. Also, as in previous 

work [Bell et al. (1990), Li et al. (1998), Bell and Kundu (2000)], it will be assumed that 

the errors due to the infrequent sampling of low earth orbiting sensors such as M are 

independent of retrieval errors. It follows that the total error variance of the time-average 

estimate is equal to the sum of the retrieval and sampling error variances, 

(20) 
2 2 o2 = Grew + 7 (P) 

where is the instantaneous, area-average rain rate in a 2.5" x 2.5" box, and the 

brackets, { ), indicate a monthly average. The accumulated retrieval error variance, 

over the period of a month, is evaluated by calculating the retrieval error variance 

of each 2.5" box-average instantaneous estimate, as described in section 4c, and then 

talung the average of these variances over the month. 

Regarding the sampling error, dsomp, it wil€ be assumed that the estimate of the 

monthly-mean rain rate over a given 2.5" x 2.5" box is the area-weighted average, 

where the "effective number of visits", S, is given by 

Here, A is the area enclosed by the 2.5" x 2.5" box, A ,  and e are the area of observation 

within the box and the mean estimated rain rate within that area, respectively, on the ith 

overpass, and the summations are over all full or partial observations of the box during 

the month. 

The error in ( P )  due to the relatively infrequent sampling of rainfall by low earth- 

orbiting satellite radiometers has been studied by several investigators; e.g., Laughlin 
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(1981), Shin and North (1988), Bell et al. (1990), Kedem et al. (1990), Oki and Sumi  

(1994), Huffman (1997), Li et al. (1998), Steiner et al. (2003). Investigations by Bell 

and Kundu (1996) and Bell and K u d u  (2000), hereafter BKOO, have demonstrated the 

applicability of a relatively simple analytical model to the sampling problem. 

Incorporating the uniform sampling approximation of Laughlin (1981) in this model, 

BKOO derived the following expression for the percentage sampling error, 

Here, C?A is the variance of the 2.5" instantaneous rain estimates, ZA is the autocorrelation 

time of instantaneous box-average rain rates, p, and T/S, the period of observation T (1 

month) divided by the effective number of visits, has been used to approximate the 

sampling time interval (At) in the original expression from BKOO. 

Based upon a limited number of radar and raingage studies, BKOO argued that the 

quantity in curly brackets in (23) is relatively constant for a given geographic location, 
- 4 2  

leading to an approximate (P) dependence of percentage error on monthly-mean rain 

rate. In the present study, (23) is evaluated with the help of the Th4I rain rate estimates 

themselves. The monthly-mean rain rate is estimated using (21), while S is given by (22), 

and is approximated by the vziimce cjf the ;Ins+mtmeoas 2.5' T?.B rain estirnztes. 

The autocorrelation time, zA, is typically much shorter (several hours) than the effective 

sampling time interval, TIS, of a single low earth-orbiting sensor (-1 day), and so the 

autocorrelation time cannot be estimated fiom the sensor observation time series. As an 

altemative, the expression from Bell et al. (1990) that was derived from GARP Atlantic 

Tropical Experiment (GATE) radar observations, 

zA = 0 . 3 9 4 ( & r ,  (24) 

is employed, where ZA is in hours and A is in km2. BKOO reported autocorrelation times 

as short as 4 h over 2.5" boxes during TOGA COARE, while autocorrelation times as 

long as 14 h over 5" boxes in southern Japan during summer were found by Oki and SUmi 

(1 996). Therefore, the autocorrelation time associated with a specific region is dependent 
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not only on box area but also the chmatology of rain systems in that region, and ihhe use 

of (24) is an obvious simplification. 

Shown in Fig. 8 are estimates of the monthly-mean surface rain rate, convective rain 

proportion, and e 1 - Q ~  at 7 km and 3 km altitude, based upon all TMI over-ocean 

observations from July 2000. The main climatological features of tropical rain 

distributions are seen in the surface rain map, including the intertropical convergence 

zone (ITCZ), more widespread rains over the Western Pacific warm pool region, and the 

intense rains over the Bay of Bengal signifymg the summer phase of the Indian Monsoon. 

To the west of the Americas and Afkica, the regions of the subtropical highs are nearly 

rain-free. In the subtropics of the southern hemisphere, weaker rains associated with the 

northern fringe of the midlatitude storm tracks are also seen. Rain rates are 

predominantly convective in the northern hemisphere and the portion of the southern 

hemisphere down to a latitude of 20" S. Note the relative minima of convective 

proportion along the ITCZ and in the more intense rain regions of the Western Pacific 

and Indian Ocean. These relative minima indicate a significant contribution to the total 

rainfall by organized mesoscale convective systems, as described by Rickenbach and 

Rutledge (1998) in their analysis of radar observations from the TOGA COARE field 

campaign (located in the Western Pacific warm pool region). 

Latent heating distributions, to first order, follow the patterns of surface rain rate, 

since the vertically-integrated heating is approximately equal to L,  P, where L, is the 

latent heat of vaporization and P is the precipitation rate. Note that in the more intense 

rain regions, the heating at 7 lun altitude exceeds that at 3 km. Where organized 

mesoscale convective systems produce a large proportion of the rainfall, the contribution 

of stratiform rains to total rainfall is significant, and the altitude of maximum latent 

heating rate is generally elevated; see Lin and Johnson (1996). However, in regions of 

weaker rains in the northern hemisphere, the rain spectrum is predominantly convective, 

and the heating at 3 km is often greater than that at 7 km. In the northern fiinge of the 

southern hemisphere storm tracks, large baroclinic systems dominate and largely 

stratiform rains produce a characteristic weak heating at upper levels and evaporative 

cooling below. 
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Presented in Fig. 9 is a comparison of retrieval and sampling errors plotted as 

functions of the monthly, 2.5' resolution rain rate estimates. Although retrieval errors are 

not entirely negligible at monthly scale at the prescribed resolution, they are relatively 

small- less than 6% of the monthly total for rain rates greater than 5 mm day-'. Because 

of the small retrieval error contribution to the monthly rain error, the remainder of this 

section will focus on sampling errors. 

Distributions of sampling error in monthly, 2.5"-resolution surface rain rates, 

convective rain proportions, and QI-QR at 7 km and 3 km altitudes are provided in Fig. 

10. The sampling error of surface rain rates is computed using (23); the sampling errors 

of convective rain rate and Q& are calculated by substituting the variances of these 

quantities for &A in (23) and assuming that the autocorrelation times are the same as the 

rain rate autocorrelation time. Note that the sampling errors for rain rate and Q1-a 

closely follow the patterns of rain rate and heating rate shown in Fig. 8; however, the 

percentage errors decrease with increasing rain rate; see Fig. 9. This behavior of the 

sampling error was noted by BKOO and others. The range of samphg error is roughly 8- 

35% at a rain rate of 5 mm day-', and it tapers to about 12% at 20 mm day-'. The large 

spread of sampling error at low rain rates is mainly due to geographic variations of the 

variance of rain rates and the frequency of sampling by the TMI: even though rain rates 

are relatively low at higher latitudes, the generally low rain rate variance and relatively 

high sampling rate tend to reduce percentage errors, according to (23). Convective rain 

proportion, being the ratio of the convective and total rain rate, has a different sampling 

error distribution, with lowest errors in regions of high rain rate; see Fig. 10. Aside from 

variations in sampling error due to error contributions from rain rate and convective rain 

rate estimates, taking the ratio of the two quantities introduces an approximate ( P )  

dependence of convective rain proportion sampling error on rain rate. Errors in monthly 

latent heating estimates follow the same trends as rain rate errors, although they are 

- -1 

proportionately greater, in general; see lower panels of Fig. 9. Also, latent heating 

retneval errors cannot be neglected in relation to sampling errors. 

Sampling error can be reduced further by taking longer-term averages of the satellite 

estimates. Shown in the right-hand panels of Fig. 9 are the retrieval and sampling errors 

of estimated June-August 2000 average rain rates and QpQR at 7 km altitude. Although 
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there is some reduction of the variance of 3-month average rain rates relative to the 1- 

month averages, a significant reduction in sampling error in the 3-month averages is also 

evident, with a range of 6-15% at an average rain rate of 5 mm day”. Latent heating 

errors are similarly reduced. 

5. Summary and Concluding Remarks 

A revision of the TRMM facility precipitation algorithm for applications to TMI 

observations (Version 6) is described. The primary objective is to adapt this algorithm 

for the estimation of consistent convective rain proportion and cloud latent heatinddrymg 

(el-(& and Qz) profiles, in addition to surface rainfall rate and precipitation profiles. The 

extension and generalization of the algorithm are accomplished by (a) increasing the 

diversity of cloud-resolving model simulations supporting the algorithm, (b) adjusting the 

cloud-resolving model microphysics to produce more realistic graupel and snow 

distributions, (c) including the effects of mixed-phase precipitation in non-convective 

regiom of the cloud-resdviig model si~cdatioos, (0) utilizhg cecsistent definitions of 

convective rain and total rain area in the context of cloud-resolving model simulations 

and satellite observations, (e) including a new geographic database to better separate 

ocean, coast, and land areas, and ( f )  establishing a more consistent microwave radiance 

“b~ckp1md” in rain-free regions fiom passive microwave observations. Uncertainties 

in retrieved parameters are estimated by applying the algorithm to synthetic radiance data 

based upon a subset of cloud-resolving model simulations, and through construction, 

starting with algorithmic error estimates and propagating these to coarser time and space 

resolutions. Synthetic data applications indicate suppression of random errors with 

averaging,’ although systematic overestimation (underestimation) of the lowest Qughest) 

rain intensities and latent heating rates is also indicated. Biases are attributed to the 

relatively small precipitationheating “signal” in passive microwave observations at both 

extremes. 

The propagation of algorithmic random errors is computed to provide baseline 

uncertainties in two relevant products: an instantaneous, 0.5”-resolution product suitable 

for data assimilation applications, and a monthly, 2.5” product required for climate 



studies or large-scale analyses. Based upon applications of the algorithm to TMI 

observations over ocean from July 2000, random errors in instantaneous, 0.5" rain rate 

estimates ranged from roughly 50% at 1 mm h-', to about 20% at 14 mm h-'. These 

errors accounted for 70-90% of the deviation between TMI and collocated PR estimates 

at this resolution. Random errors in monthly, 2.5" rain rate and heating estimates are due 

to the combination of retrieval and sampling errors. Sampling errors are estimated using 

the Laughlin (1981) model, in which the variance of rain rate or heating rate over the 

month is supplied by the TMI estimates themselves. Although rain rate retrieval errors 

are not negligible (up to 6% at a rain rate of 5 mm day-'), sampling errors dominate at 

this time-space resolution. Sampling errors range from 8% to 35% at 5 mm day-', but 

decrease with increasing rain rate. Sampling errors in latent heating rates follow the 

same trend. Averaging over 3 months reduces the rain rate sampling error to a range of 

6% to 15% at 5 mm day-'. Latent heating errors are similarly reduced. 

It should be stressed that the algorithmic error estimates described in this study 

represent only that portion of the random error associated with lack of precipitation- or 

latent heating-specific information in the passive microwave observations. Two other 

sources of uncertainty are the systematic errors in the cloud-resolving model simulations 

that form the supporting database of the current algorithm and the lack of 

representativeness of the database for algorithm applications to a given region, climate 

regime, or atmospheric state in general. Nevertheiess, the comparisons of the algorithmic 

error estimates and the TMI-PR deviations suggest that these algorithm errors make up a 

significant portion of the total error at shorter time and space scales. As time and space 

averaging of the microwave precipitationheating estimates increase, random errors due 

to the lack of information in the radiance data or insufficient sampling will decrease, 

exposing systematic errors associated with the cloud-resolving model database. 

Errors in precipitation and latent heating estimates are examined further in Part 11 of 

this study, in which Version 6 and Version 5 TMI estimates are compared to independent 

ground-based observations, as well as those from the PR. 
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Tables 

Table 1. Characteristics of the TRMM Microwave Imager and Precipitation Radar. The 
horizontal resolution specifications of the PR are at nadir view. 

T m  Microwave Imager (TMI) . 

Channel frequency [GHz]l 
Polarizations 

10.65 / H, V 
19.35 I H, V 
21.3 I V 
37.0 I H, V 
85.5 I H, V 

Precipitation Radar (PR) 

Freauency TGHzJ 
13.8 

Table 2. Cloud-resolving m 
algorithm. 

Classification 
Tropical Cyclone 

Tropical Squall Line 
Tropical Squall Line 
Tropical Convection 

Extratropical Cyclone 
Extratropical Cyclone 

Horizontal Noise 

37 x 63 0.6 
18 x 30- 0.5 
18 x 23 0.7 
9 x 16 0.3 
5 x 7  0.7 

Resolution llcml rDKl 

Horizontal Resolution 
at Surface/ Uncertainty Due to 

Range Resolution lkml s a p l i n g  rai 
4.3/0.25 0.7 

3el simulations that currently support the Version 6 TMI 

DescriDtion Model 

GATE, 12 Sept. 1974 GCE 
GCE 
GCE 
MM5 
MM5 

Hurricane Bob, 1991 MM5 

TOGA COARE, 22 Feb. 1993 
TOGA COAFtE, 19-26 Dec. 1992 

North Atlantic, 6 Dec. 1992 
North Atlantic, 23 July 1999 

Note: locations of simulations are often indicated by the field campaign fiom which 
environmental forcing data were obtained GATE is the Global Atmosphere Research 
Program’s Atlantic Tropical Experiment., and TOGA COARE is the Tropical Ocean 
Global Atmosphere Coupled Ocean Atmosphere Response Experiment. 
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Figure Captions 

Fig. 1. Scatterplots of estimated versus true rain rate and QI-QR at 3 krn altitude at (a) 
fo&rint resolution (14 km), (b) 28-km resolution, and (c) 56 km resolution, based upon 
applications of the microwave radiometer algorithm to synthetic radiance data. 

Fig. 2. Contributions of estimated and true rain rates to their mean values (upper panel), 
and contribution of estimated minus true rain rates to the total bias, plotted versus the true 
rain rate (lower panel), based upon applications of the microwave radiometer algorithm 
to synthetic radiance data 

Fig. 3. Contributions of estimated (upper panel) and true (middle) Q1-a to their mean 
values at different altitudes, plotted as function of the estimated and true QI-QR, 
respectively. In the lower panel, the contribution of estimated minus true QI-QR to the 
total bias is plotted as a function of the true Q&R at different altitudes. Estimates are 
based upon applications of the microwave radiometer algorithm to synthetic radiance 
data. 

Fig. 4. Vertical profiles of the mean estmated (right panel) and true (left panel) QI-QR, 
based upon applications of the microwave radiometer algorithm to synthetic radiances, 
derived from a cloud-radiative model simulation of Hurricane Bob (1991). Plotted are 
the mean convective, non-convective, and total QI-@ profiles over the entire simulation 
domain. Mean estimated and true surface rain rates are also indicated. 

Fig. 5. Algorithmic estimates of random error in footprint-scale rain rates, based upon 
microwave radiometer algorithm applications to a subset of July 2000 TMI observations. 

Fig. 6.  Correlations of estimated rain rates and rain rate errors for TMI footprints 
separated by distances plotted on the abscissa. The solid curve indicates the mean error 
correlation (at the specified distance) for data stratified by instantaneous mean rain rate in 
0.5' grid boxes; bars indicate the standard deviation of correlations at the specified 
distance. Please see text for a complete description. 

Fig. 7. Estimated mean random errors in TMI instantaneous rain rates at 0.5' resolution, 
plotted versus collocated PR rain rate estimates (dashed line). The TMI-PR random 
deviation is plotted for comparison (solid line). The statistics are based upon TMI and 
PR observations over the ocean from July 2000. 

Fig. 8. Monthly-mew 2.5" resolution surface rain rates, convective rain proportions, and 
Q& at 7 km and 3 km, derived from algorithm applications to TMI observations over 

. ocean from July 2000. 

Fig. 9. Percentage errors in monthly-mean, 2.5' resolution surface rain rate estimates due 
to retrieval errors and incomplete temporal sampling, plotted versus the estimated rain 
rate (left panel). Monthly statistics are based upon applications of the microwave 
radiometer algorithm to TMI observations over ocean from July 2000. Also plotted are 
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retrieval and sampling errors in June-August 2000 mean surface rain rates at 2.5" 
resolution (right panel). 

Fig. 10. Estimated sampling errors in monthly-mean, 2.5" resolution surface rain rates, 
convective rain proportions, and e1-Q~ at 7 km and 3 km, derived from algorithm 
applications to TMI observations over ocean from July 2000. 
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Popular summary 

Precipitation and Latent Heating Distributions 
&om Satellite Passive Microwave Radiometry 

Part I: Method and Uncertainties, and 
Part II: Evaluation of Estimates Using Independent Data 

A basic process in clouds is the transformation of water in the vapor phase to the 
liquid or solid phase. This process produces not only precipitation (rain or snow) but also 
latent heat, which is released into the atmosphere as the water molecules go from the 
higher to the lower energy states. A knowledge of the distributions of precipitation over 
the globe is essential for studying the earth's climate and the cycling of water through the 
earth-atmosphere system. The distributions of latent heating tell us how variations in 
buoyancy drive circulations in the atmosphere and how the sun's energy (which is 
consumed in the evaporation of surface moisture) is redistributed by the atmosphere to 
regions of more intense precipitation (and thus more intense latent heating). 

In Part I of this study, an improved method for estimating precipitation and latent 
heating distributions from satellite-borne passive microwave radiometer measurements is 
described. A key feature of this method are the improved models of clouds and 
precip&ation that are used to create a kind of reference "library" of possible solutions that 
the method can draw upon. If simulated microwave radiances associated with a 
particular cloudlprecipitation model in the library are consistent with radiances actually 
observed by the satellite microwave radiometer, then it is assumed that that particular 
model is a likely solution. The models of cloud and precipitation are not perfect, 
however: errors in the models can result in errors in inferred precipitation or latent 
heating from the estimation method. In the current study, the physics of precipitating ice 
particles in the models is improved to remove a significant source of error in the modeled 
clouds. Another important advance is the way convective and stratiform precipitation 
areas are separated by the estimation method. Convective regions are associated with 
intense rainfall and strong upward and downward air motions in the precipitating clouds, 
while stratiform rain is gentle and widespread, and the associated air motions are 
relatively weak- By initially classifying a given region as convective or stratiform based 
upon the microwave radiometer -observations, a more specific precipitation or latent 
heating estimate can be made. An improved technique for separating convective and 
stratiform regions using the horizontal variation of observed microwaves and their 
polarization is employed in the revised estimation method. 

The improved method is scrutinized to determine what levels of error can be 
expected in estimated precipitation and latent heating. If rain rate estimates are averaged 
over 0.5" x 0.5" boxes, their errors are expected to be about 50% for a 1 mm per hour rain 
rate but decrease to 20% at 14 mm per hour. If the rain rate estimates are accumulated in 
2.5" x 2.5" boxes and then averaged over 1 month, the anticipated errors in the resulting 
monthly rain rates can be up to.3595 for moderate rain rates. The primary source of error 
in d e  monthly-average rain estimates is the limited sampling, about 1 per day, by the 



satellite microwave radiometer. Latent heating estimates are expected to have errors that 
are slightly greater than errors in rain rate estimates. 

The theoretical error estimates for precipitation and latent heating derived in Part I 
serve as benchmarks for estimates based upon the independent measurements described 
in Part 11. Surface rain rates estimated using the satellite microwave radiometer 
observations are compared to both ground-based radar estimates and estimates fiom 
satellite-borne radar. Comparing estimates averaged over 0.5" x 0.5" boxes, the improved 
method yields estimates with less bias than forerunning methods. The bias of monthly- 
averaged rain rates in 2.5" x 2.5" boxes is similarly reduced. These are significant results, 
since applications such as the assimilation of rain estimates into computer weather 
forecasting models require estimates with a minimum of bias, although randomly varying 
errors can be tolerated. The estimates of error in Part I for 0.5" x 0.5" rain rates are 
consistent with the errors derived from independent data, with the exception of extremely 
light rains. The .theoretical estimates of the sampling error in monthly-average rain rates 
over 2.5" x 2.5" represent only a fraction of the error indicated by comparisons with the 
independent data: apparently small biases in the algorithm estimates due to residual 
errors in the cloud model reference library are exposed in monthly averages. 

Latent heating rates derived from the satellite passive microwave observations are 
compared to estimates from ground-based Doppler radars as well as those from a balloon 
sounding network. The Doppler radars provide measurements of the horizontal winds 
over a precipitation region; these winds, in turn, can be used to infer the strength of 
updrafts and downdrafts, since the mass of air must be conserved. Ascending air is 
associated with positive latent heating (warming of the air which creates buoyancy), 
while descending air is associated with negative latent heating (cooling from evaporation 
of rain which creates denser, sinking air). In general, the satellite latent heating estimates 
are consistent with the Doppler radar estimates, but an overestimation of heating at high 
altitudes (greater than 8 km) is also indicated. 

The balloon sounding network measures the atmosphere's response to latent 
heating over a fairly large area (about 10" x 5" in this study). Again, rising and sinking 
air determined from the network are the primary indicators of latent heating and cooling, 
respectively. A balloon network in the South China Sea operated for almost two months 
during 1998, and the time-variation'of heating derived from this network is similar to the 
time-variation of latent heating based upon the satellite microwave radiometer estimates. 
The limited sampling by the satellite radiometer contributes to differences between the 
network and satellite heating estimates, however. 


